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N U M E R I C A L  ANALYSIS OF T H E  F L U T T E R  OF A S H A L L O W  S H E L L  

S. D. Algaz in  and I. A. Kiyko 1 UDC 539.3:534.1 

The stability of vibrations of a shallow shell that is rectangular in plan in a gas flow is stud- 

ied for  an arbitrary vector of f low velocity. Mathematically, the problem is shown to reduce 
to an ill-conditioned computational problem. To solve this problem, we propose a numerical 

saturation-free algorithm that allows one to obtain a sufficiently accurate solution for a grid 

containing 169 (13 • 13) nodes. In calculations for cylindrical and spherical shallow shells, 
new mechanical effects concerning the vibration modes and the dependence of  the critical flutter 
velocity on the direction of the flow-velocity vector were found. 

I n t r o d u c t i o n .  II'yushin and Kiyko [1] gave a new formulation of the problem of the flutter of a 
shallow shell under the assumption that  the differential pressure acting on the shell is determined within the 
framework of the law of plane sections in supersonic aerodynamics [2]. The mathematical problem reduces 
to an eigenvalue problem for a system of two equations with biharmonic higher operators with respect to 
the amplitude deflection T and stress F functions. For certain boundary conditions, the function F can be 
eliminated (numerically); the other equation for ~ contains two dimensionless constants of orders 10 -3 and 
102 (for the characteristic values of the parameters) for higher-order derivatives, which predetermines the 
fact that the problem is ill-conditioned. At the same time, the presence of the boundary layer in the solution 
indicates the need to refine the grid in the neighborhood of the contour. 

The saturation-free method proposed by Babenko is ideal to overcome the above-mentioned computa- 
tional difficulties; it has been applied successfully in the analysis of the flutter of a plate with an arbitrary 
plan form [3]. In the present paper, the method is generalized to the problem of a panel flutter of rectangular- 
in-plan shallow shells; calculations were performed for cylindrical and spherical shells. 

1. Formula t ion  of  the  P r o b l e m .  The initial system of differential equations can be written in 
dimensionless form [1] 

DA2~ - h L ( F )  - k(v,  grad~) = A~, A2F + EL(Q)  = 0; (1.1) 

A = - p h w  2 -- kw; (1.2) 

~ f ~ f (1.3) 
L ( f )  = ky -ff~x2 + k~ Of 2, 

where D = Eh3/(12(1 - v2)) is the flexural rigidity, E is Young's modulus, v is Poisson's ratio, k is the 
polytropic index, v is the velocity of the air flow, h is the thickness of the shell, p is the density of the shell 
material, w is the complex frequency of vibrations, kx and ky are the principal curvatures (the lines of principal 
curvatures coincide with the coordinate lines), ~ = ~(x, y) is the deflection of the shell, and F = F(x ,  y) is a 
stress function. All the above-mentioned quantities are dimensionless. Nondimensionalization was performed 
in the same manner as in [3]. 
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The above equations are considered in the region G = {-1 <~ x <~ 1, - b  ~< y <~ b}, i.e., in a rectangle; 
the lines of the shell's principal curvatures coincide with the coordinate lines. 

We solve Eqs. (1.1) and (1.2) for two types of boundary conditions. 
(1) Hinged (simply supported) edges: 

02 ~ O2 F bT=0, 02F 
- 0  for x = l , - 1 ,  

Ox Oy 

02r 02 F 02 F 
-=0, ~y2 =0'  Ox 2 - 0 ,  Ox cg-----y = O for y = b , - b ;  

(2) Clamped slipping edges: 

0~ 02F 02F 
= 0, ~xx = 0, c9y2 -- O, - - O x  Oy = 0 for x = 1, --1, 

= O, O~ = O, 02F 02F 
0--y -~x2 = 0 ,  c 3 x o y - O  for y = b , - b .  

It can easily be shown that  the boundary conditions imposed on the stress function F can be replaced, 
without loss of generality, by the equivalent conditions [4] 

OF 
(x, y) �9 oa ,  F = o, = o, (1.4) 

where n is the outward normal vector to the contour of the shell. 
The vibrations of the shell are stable or unstable, depending on whether Rew < 0 or Reca > 0. If 

= a + i~ is the eigenvalue of the formulated problem, in view of (1.2) the  inequalities imply that  f ( a ,  ~) > 0 
or f (a, /3) < 0, where f (a, j3) = ak 2 -phi3 2. Inasmuch as a = a(vz, vy) and 13 = j3(vz, vy), where vz = v cos 9, 
Vy - vsin 9, and v = JvJ, the equation f(a,13) = 0 determines the neutral  curve (stability parabola) in the 
complex plane ~ and the corresponding critical flutter velocity v for a specified 9. 

If v = 0, all the eigenvalues are real; as the flow velocity increases, some eigenvalues enter the complex 
plane. Consequently, the problem is to find (for a given 8) the first complex eigenvatue that  crosses the 
stability parabola. As a result, the critical velocity and the corresponding vibration mode (eigenfunction) 
are determined. It follows tha t  to solve the problem correctly, it is necessary to determine a sufficiently long 
initial part of the spectrum. 

Thus, to determine the root of the equation f ( a ,  fl) = O, in each i terat ion one has to solve the complete 
eigenvalue problem for an N • N nonsymmetric matrix, where N is the number of grid nodes. The difficulties 
are overcome by the saturation-free method, which provides good accuracy for smooth solutions even when 
a relatively coarse grid is used. The eigenvalues of the matrix were calculated by the QR-algorithm (the 
program implementation in the EISPACK package). 

2. D i s c r e t i z a t i o n .  Discretization of the boundary-value problems described is associated with dis- 
cretization of the biharmonic operators /k2 T and A2F under the boundary  conditions of simple support 
(clamping) and the boundary  condition of clamping, respectively. Moreover, the operator L(f )  and the terms 
containing first-order derivatives k(v, grad ~) should be discretized. 

We assume that  kx and ky are constants. We have k~ = 0 and ky = 1 /R  for a cylindrical shell and 
kz = ky = 1 /R  for a spherical shell (R is the radius of the shell). Therefore, discretization of the operator L( f )  
under the Dirichlet homogeneous boundary condition is needed. This discretization is performed according to 
[5]. The terms with the first-order derivatives k(v,  grad ~) are also discretized according to [5]. I t  should be 
noted that  since L( f )  is the second-order operator, it suffices to satisfy the only boundary condition, namely, 
f = 0 on OG to discretize this operator. Since there are no nodes at  the boundary, an interpolation formula 
that  does not satisfy (compulsorily) the boundary condition ~ = 0 on OG was used for discretizing the terms 
with first-order derivatives. In discretization of the biharmonic operators, both boundary conditions were 
satisfied. Calculations show tha t  the solution obtained for ~ satisfies the boundary  conditions. 
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Discretization of the biharmonic operator under the boundary conditions of simple support is described 
in [5]. We consider discretization of the biharmonic operator under the boundary condition of clamping (1.4). 
For the function F = F(x, y) in a rectangle, we use the interpolation formula 

F(x, y) = ~ Mio(z)Ljo(x)F(xj,  Yi), y = bz, z e [-1, 11, x E [-1, 11, 
j = l  i=1 

l ( x )  -  :=cos 05, Ljo(x) = l '(xj)(x - x j ) '  

0 j =  ( 2 / - 1 ) ~  M(z) 
2 n  ' j = l , 2 , . . . , n ,  Mio(z)= M ' ( z i ) ( z -  zz)' 

( 2 i - 1 ) ~  

(2.1) 

M(z) -= (z 2 - 1)2Tin(z), zi = cos 0i, 0i = 2rn ' i = 1, 2 , . . . ,  m, 

where Tn is the Chebyshev polynomial. The interpolation formula (2.1) satisfies the boundary conditions 
(1.4). We enumerate the nodes in the rectangle (xj, Yi) first along y and then along x, i.e., from top to bottom 
and from right to left, and substitute (2.1) into (1.1). As a result, we obtain 

H ~  - hLhF = ~a; (2.2) 

H3F + ELhcp = O. (2.3) 

Here ~ is the vector containing approximate values of the deflection of the shell at the grid nodes and H is 
an N • N matrix (N = m n  is a matrix of the discrete problem of a plate). Its construction for the case of 
simple support is described in [5]. For the case of clamping, the construction of the matrix H is similar to 
that considered above. Expressing F from (2.3) and substituting it into (2.2), we obtain 

(H + hELhH~ILh)~ = A~, (2.4) 

where A is the approximate eigenvalue and L u and H3 are N x N matrices that appear after discretization 
of the operators L [see (1.3)] and A2F. 

Further analysis was carried out using the finite-dimensional eigenvalue problem (2.4). As was men- 
tioned in the Introduction, this problem contains a large parameter hE (of order 102 for the data used in 
calculations). The matrix of this parameter is nonsymmetric and can, therefore, have complex eigenvalues 
for the flow velocity v = 0, which is supported by particular calculations. Therefore, the applied approach 
was updated. The matrix //3 in (2.4) was replaced by the matrix /-/3 = 0.5(/-/3 + H~), where the prime 
denotes a transposed matrix. This operation can be interpreted as follows. The initial problem is self-adjoint 
[biharmonic equation with boundary conditions (1.4)]. But, as a result of discretization, we obtain the 
nonsymmetric matrix/-/3. We represent H3 in the form 

/-/3 --- 0.5(/-/3 + H~) + 0.5(/-/3 - H~) 

and relate the antisymmetric part to the discretization error. The corresponding perturbation introduced 
into the eigenvalues of the matrix/-/3 depends on how the resolvents of the matrices H3 and (/-/3 § H~)/2 are 
close in the part of the complex plane that is of interest in study of flow stability. This perturbation can be 
estimated theoretically according to the scheme of [6], but we verified it numerically. 

The matrix H3 of dimension 361 x 361 (361 = 19 x 19) has the first eigenvalue )u = 604.0638, which 
was compared with the result of [7]: X/~l/~r 2 = 2.4902 (2.489). The bracketed value was calculated in [7]. 
The matrix (/-/3 + H~)/2 has the eigenvalue A1 = 559.242064, where yr~l/~r 2 = 2.3961. 

Thus, the perturbation introduced into the eigenvalues by matrix symmetrization is acceptable. A 
similar symmetrization was applied to the matrices L h and H0 (H0 is a matrix of the discrete biharmonic 
operator for the deflection ~). As a result, the matrix LhH~IL h became symmetric with an accuracy of 10 -6. 
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~ x .  v =o.56o6 
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Fig. 4 

, ~ ~  v = 2.7654 

Fig. 5 
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This, however, was insufficient, since the discrete problem still had complex eigenvalues for v -- 0. After the 
repeated symmetrization of the matrix LhH~IL h, the eigenvalues of the discrete problem for v = 0 became 
real and positive. In calculating the critical velocity, convergence was observed. 

3. N u m e r i c a l  Resu l t s .  Calculations were performed at the following values of the parameters: 
k = 1.4,. v = 0.33, co = 331.26 m/sec, p = 1.0133 �9 105 Pc, E -- 6.867- 101~ Pc, and p -- 2.7- 103 kg/m 3. 
The relative thickness and dimensionless radius of the shell were taken to be 3 �9 10 -3 and 2.5, respectively. 
Preliminary calculations using 9 • 9, 13 • 13, and 19 • 19 grids showed that  the results for the 13 • 13 and 
19 • 19 grids are close. Below, we give the critical velocities obtained for a 19 • 19 grid. 

Calculations for a square-in-plan spherical shallow shell can be regarded as testing calculations. For the 
angles ~ - 0, 7r/8, :r/4, 3~r/8, and 7r/2, the following critical velocities were obtained: 1.4263 (20), 1.4924 (18), 
1.5813 (18), 1.4924 (18), and 1.4263 (20). The bracketed numbers indicate the first eigenvalue tha t  enters the 
stability parabola. As was expected from the symmetry  of the problem, the critical velocities are symmetric 
about the straight line 0 = r /4 .  This supports the correctness of the method and the program. Furthermore, 
to control the calculations, the following two diagrams were plotted: the forms of the deflection function 
Re ~(x, 0) and Re ~(0, y) and the form of the two-dimensional function Re ~(x, y). The curves Re ~(x, 0) and 
Re ~(0, y) coincided for 0 = 7r/4; the eigen-forms Re ~(x, y) for the angles 0 -- 0 and 0 - ~r/2 were identical 
as well. This shows tha t  the calculations are correct. 

For a clamped spherical shallow shell, for the same directions of the flow-velocity vector the follow- 
ing critical velocities were obtained: 1.6424 (20), 1.7038 (16), 1.6876 (17), 1.7038 (16), and 1.62384 (20). 
Generally, the results are similar to those obtained in the previous case. 

Calculations for a rectangular-in-plan (b = 0.5) spherical shallow shell were performed. For the case 
of simple support, the following critical velocities were obtained for the same values of the angle 0:1.7752 
(9), 1.8787 (9), 1.8414 (5), 1.8558 (4), and 1.7469 (4). For the boundary conditions of clamping, we obtained 
1.6138 (9), 1.6902 (9), 1.8935 (5), 1.7335 (5), and 1.6602 (5), respectively. 

Further calculations were performed for a square-in-plan cylindrical, simply supported shell. For the 
same values of the angle 0, we obtained the following critical velocities: 2.7654 (7), 0.5606 (1), 0.3004 (1), 
0.2295 (1), and 0.2120 (1). The principal difference is seen between these and the preceding results: the 
velocity decreases abrupt ly  for 8 close to ~r/2. We note that, for a square plate, the critical velocity is equal 
to 0.2103 at 8 = 0 and ~-/2 (the calculations were performed by the above-described method  for ky = 0). 
Thus, the critical flutter velocity of the flow along the generatrix of the cylindrical shell is one order of 
magnitude greater than  tha t  across the generatrix. This effect can easily be explained: the bending rigidity 
of a cylindrical shell along the generatrix is much greater than that across the generatrix. The evolution of the 
eigen-forms is shown in Figs. 1-5. In addition, cylindrical shells with radii 10 and 40 were calculated for the 
same angles of direction of the flow-velocity vector. The values of the critical velocity obtained for a radius 
equal to 10 are 0.8216 (14), 0.4629 (1), 0.2287 (1), 0.1727 (1), and 0.1591 (1) and those obtained for radius 
40 are 0.3378 (6), 0.3439 (1), 0.2433 (1), 0.1673 (1), and 0.1514 (1). Thus, as R -* c~, the critical flutter 
velocity decreases in flows directed both along and across the generatrix. This conclusion is very important, 
since the small initial convexity of the shell in a transverse flow (for a radius equal to 40, the shell rise is 
0.0125) decreases the critical flutter velocity. 

4. C o n c l u s i o n s .  An experimental algorithm for the complex computational problem of calculation of 
the critical flutter velocity of the shallow shell has been described. The calculations show good accuracy for 
a grid containing 169 = 13 • 13 nodes. The results were obtained by Babenko's saturation-free discretization 
method. All the results concerning the mechanics are new. Ogibalov and Koltunov [8] investigated the 
flutter of a spherical shallow shell by the Bubnov-Galerkin method. As is welt known, this method gives 
underestimated values of the critical velocity. A new mechanical effect for a cylindrical panel has been found, 
namely, the abrupt change in the critical velocity as the angle 0 is varied. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant  No. 97-01- 

00923). 
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